题目内容
【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于两点,点是线段的中点,直线与轴交于点,求.
【答案】(I)曲线C:,直线l:;
(II)
【解析】
(Ⅰ)由同角的平方关系,化简可得曲线的普通方程,由极坐标和直角坐标的关系:,,结合两角和的余弦公式,可得直线的直角坐标方程;
(Ⅱ)求得的坐标,设出直线的参数方程,代入曲线的方程,运用韦达定理和中点公式,计算可得所求值.
解:(Ⅰ)曲线的参数方程是 (为参数),
可得,
则曲线C的普通方程为,
直线l的极坐标方程为,,
即,
由,可得
;
(II)由直线l的方程,可得,
设直线l的参数方程为(为参数),
将该参数方程代入圆,
可得,
则
,
,
则.
【题目】某市为了调查小区成年居民对环境治理情况的满意度(满分按100计),随机对20名六十岁以上的老人和20名十八岁以上六十岁以下的中青年进行了不记名的问卷调查,得到了如下统计结果:
表1:六十岁以上的老人对环境治理情况的满意度与频数分布表
满意度 | |||||
人数 | 1 | 5 | 6 | 5 | 3 |
表2:十八岁以上六十岁以下的中青年人对环境治理情况的满意度与频数分布表
满意度 | |||||
人数 | 2 | 4 | 8 | 4 | 2 |
表3:
满意度小于80 | 满意度不小于80 | 合计 | |
六十岁以上老人人数 | |||
十八岁以上六十岁以下的中青年人人数 | |||
合计 |
(1)若该小区共有中青年人500人,试估计其中满意度不少于80的人数;
(2)完成表3的列联表,并回答能否有的把握认为“小区成年居民对环境治理情况的满意度与年龄有关”?
(3)从表3的六十岁以上的老人“满意度小于80”和“满意度不小于80”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取3人,求至少有两人满意小于80的概率.
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |