题目内容
13.设f(x)=ax2-ax+3.(1)当a=-4时,设集合A={x∈R|f(x)<0},求A;
(2)若不等式$(\frac{1}{2})^{f(x)}$<4的解集为R,求实数a的取值范围.
分析 (1)当a=-4时,不等式f(x)<0可化为:-4x2+4x+3<0,解得A;
(2)若不等式$(\frac{1}{2})^{f(x)}$<4=${(\frac{1}{2})}^{-2}$的解集为R,则f(x)>-2恒成立,则a=0,或$\left\{\begin{array}{l}a>0\\ \frac{12a-{a}^{2}}{4a}>-2\end{array}\right.$,解得答案.
解答 解:(1)当a=-4时,解f(x)=-4x2+4x+3<0得:x<$-\frac{1}{2}$,或x>$\frac{3}{2}$,
∴A={x|x<$-\frac{1}{2}$,或x>$\frac{3}{2}$},
(2)若不等式$(\frac{1}{2})^{f(x)}$<4=${(\frac{1}{2})}^{-2}$的解集为R,
则f(x)>-2恒成立,
则a=0,或$\left\{\begin{array}{l}a>0\\ \frac{12a-{a}^{2}}{4a}>-2\end{array}\right.$,
解得:a∈[0,20)
点评 本题考查的知识点是二次函数的性质,指数不等式的解法,难度中档.
练习册系列答案
相关题目
8.若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为( )
A. | 24 | B. | 25 | C. | 27 | D. | 30 |
2.设f(x)是定义在R上的偶函数f(x)+f(2-x)=0.当x∈[0,1]时f(x)=x2-1,若关于x的方程f(x)-kx=0恰有三个不同的实数解,则正实数k的取值范围是( )
A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
3.定义在R上的函数f(x)是偶函数,若f(x)在区间[1,2]上是减函数,在区间[2,3]上是增函数,则f(x)( )
A. | 在区间[-2,-1]上是增函数,在区间[-3,-2]上是增函效 | |
B. | 在区间[-2,-1]上是增函数,在区间[-3,-2]上是减函数 | |
C. | 在区间[-2,-1]上是减函数,在区间[-3,-2]上是增函数 | |
D. | 在区间[-2,-1]上是减函数,在区间[-3,-2]上是减函数 |