题目内容
【题目】在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.
(1)写出曲线C1和C2的直角坐标方程;
(2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.
【答案】(1)C1的直角坐标方程为;C2的直角坐标方程为;(2).
【解析】
(1)由(为参数),消去参数,可得曲线C1的直角坐标方程.由,得ρ2+3ρ2sin2θ=4,结合极坐标与直角坐标的互化公式可得曲线C2的直角坐标方程;
(2)由P为曲线C2上的动点,设P(2cosα,sinα),则P与圆的圆心的距离,利用二次函数求最值,再由勾股定理求|PA|的最大值.
解:(1)由(为参数),消去参数,可得.
∴曲线C1的直角坐标方程为;
由,得ρ2+3ρ2sin2θ=4,
即x2+y2+3y2=4,即.
∴曲线C2的直角坐标方程为;
(2)∵P为曲线C2上的动点,又曲线C2的参数方程为
∴设P(2cosα,sinα),
则P与圆C1的圆心的距离
.
要使|PA|的最大值,则d最大,当sinα时,d有最大值为.
∴|PA|的最大值为.
【题目】2020年是我国垃圾分类逐步凸显效果关键的一年.在国家高度重视,重拳出击的前提下,高强度、高频率的宣传教育能有效缩短我国生活垃圾分类走入世界前列所需的时间,打好垃圾分类这场“持久战”,“全民战”.某市做了一项调查,在一所城市中学和一所县城中学随机各抽取15名学生,对垃圾分类知识进行问答,满分为100分,他们所得成绩如下:
城市中学学生成绩分别为:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85
县城中学学生成绩分别为:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72
(1)根据上述两组数据在图中完成两所中学学生成绩的茎叶图,并通过茎叶图比较两所中学学生成绩的平均分及分散程度;(不要求计算出具体值,给出结论即可)
(2)记这30名学生成绩80分以上为良好,80分以下为一般,完善表格,并判断是否有99%的把握认为该城市中学和县城中学的学生在了解垃圾分类知识上有差异?(结果保留三位小数)
学生成绩 | 良好 | 一般 | 合计 |
城市中学学生 | |||
县城中学学生 | |||
合计 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |