题目内容
【题目】菱形中,平面,,,
(1)证明:直线平面;
(2)求二面角的正弦值;
(3)线段上是否存在点使得直线与平面所成角的正弦值为?若存在,求;若不存在,说明理由.
【答案】(1)证明见解析(2)(3)存在,
【解析】
(1)建立以为原点,分别以,(为中点),的方向为轴,轴,轴正方向的空间直角坐标系,求出直线的方向向量,平面的法向量,证明向量垂直,得到线面平行;
(2)利用空间向量法求出二面角的余弦值,再由同角三角函数的基本关系求出正弦值;
(3)设,则,利用空间向量求表示出线面角的正弦值,求出的值,得解.
解:建立以为原点,分别以,(为中点),的方向为轴,轴,轴正方向的空间直角坐标系(如图),
则,,,
,,.
(1)证明:,,
设为平面的法向量,
则,即,
可得,
又,可得,
又因为直线平面,所以直线平面;
(2),,,
设为平面的法向量,
则,即,可得,
设为平面的法向量,
则,即,可得,
所以,
所以二面角的正弦值为;
(3)设,则,
则,,
设为平面的法向量,
则,即,
可得,
由,得,
解得或(舍),所以.
【题目】今年,新型冠状病毒来势凶猛,老百姓一时间“谈毒色变”,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出“医”字的繁体字“醫”进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:
每周喝酒量(两) | |||||
人数 | 100 | 300 | 450 | 100 |
规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;
②每周喝酒量达到8两的叫有酒瘾的人.
(1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;
(2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.
常喝酒 | 不常喝酒 | 合计 | |
得病 | |||
不得病 | 250 | 650 | |
合计 |
参考公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |