题目内容
【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:
数据分组 | [12.5,15.5) | [15.5,18.5) | [18.5,21.5) | [21.5,24.5) | [24.5,27.5) | [27.5,30.5) | [30.5,33.5) |
频数 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根据频数分布表,求该产品尺寸落在[27.5,33.5]内的概率;
(2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);
(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布
,其中
近似为样本平均值
,
近似为样本方差
,经计算得
.利用该正态分布,求
(
).
附:(1)若随机变量服从正态分布
,则
;(2)
.
【答案】(1)0.16;(2)22.7;(3)0.1587
【解析】
(1)直接根据频数分布表求尺寸落在[27.5,33.5)内的概率;
(2)由每一组数据的中间值乘以频率作和求得样本平均数;
(3)依题意,求得
与
,再由正态分布曲线的对称性求P(z≥27.43)=0.1587.
(1)根据频数分布表可知,产品尺寸落在[27.5,33.5]内的概率为;
(2)样本平均数;
(3)依题意,而
,
,则
,
,
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量
(单位:千万件)的影响,统计了近
年投入的年研发费用
与年销售量
的数据,得到散点图如图所示.
(1)利用散点图判断和
(其中
均为大于
的常数)哪一个更适合作为年销售量
和年研发费用
的回归方程类型(只要给出判断即可,不必说明理由)
(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求
关于
的回归方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企业年利润(单位:千万元)与
的关系为
(其中
),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据,其回归直线
的斜率和截距的最小二乘估计分别为
,