题目内容

【题目】已知函数f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.

【答案】解:(Ⅰ)f(x)= sin2x﹣(cos2x+1)﹣1= sin2x﹣cos2x﹣2=2sin(2x﹣ )﹣2, ∵ω=2,﹣1≤sin(2x﹣ )≤1,
∴f(x)的最小正周期T=π;最小值为﹣4;
(Ⅱ)∵f(C)=2sin(2C﹣ )﹣2=0,
∴sin(2C﹣ )=1,
∵C∈(0,π),∴2C﹣ ∈(﹣ ),
∴2C﹣ = ,即C=
将sinB=2sinA,利用正弦定理化简得:b=2a,
由余弦定理得:c2=a2+b2﹣2abcosC=a2+4a2﹣2a2=3a2
把c= 代入得:a=1,b=2
【解析】(Ⅰ)f(x)解析式利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出函数f(x)的最小正周期,利用正弦函数的值域确定出f(x)最小值即可;(Ⅱ)由f(C)=0及第一问化简得到的解析式,求出C的度数,利用正弦定理化简sinB=2sinA,得到b=2a,利用余弦定理列出关系式,把c,b=2a,cosC的值代入即可求出a与b的值.
【考点精析】本题主要考查了两角和与差的正弦公式和余弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网