题目内容
【题目】已知正项数列的前n项和为,对于任意正整数m、n及正常数q,当时,恒成立,若存在常数,使得为等差数列,则常数c的值为______
【答案】
【解析】
可令m=n﹣1,结合数列的递推式和等比数列的通项公式和求和公式,讨论q是否为1,结合等差数列的通项公式和对数的运算性质,可得所求结论.
解:因为对任意正整数n,m,
当n>m时,Sn﹣Sm=qmSn﹣m总成立,
所以n≥2时,令m=n﹣1,得到Sn﹣Sn﹣1=qn﹣1S1,即an=a1qn﹣1=qn﹣1,
当n=1时,也成立,
所以an=qn﹣1,
当q=1时,Sn=n,q≠1时,Sn,
{lg(c﹣Sn)}为等差数列,可得q≠1,
lg(c)=lgnlgq﹣lg(1﹣q)为等差数列,
即有c(0<q<1),
故答案为:c(0<q<1).
【题目】每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我们国家会定期进行0~18岁孩子身高体重全国性调查,然后根据这个调查结果制定出相应的各个年龄段的身高标准.一般测量出一个孩子的身高,对照一下身高体重表,如果在平均值标准差以内的就说明你的孩子身高是正常的,否则说明你的孩子可能身高偏矮或偏高了.根据科学研究0~18岁的孩子的身高服从正态分布.在某城市随机抽取100名18岁男大学生得到其身高()的数据.
(1)记表示随机抽取的100名18岁男大学生身高的数据在之内的人数,求及的数学期望.
(2)若18岁男大学生身高的数据在之内,则说明孩子的身高是正常的.
(i)请用统计学的知识分析该市18岁男大学生身高的情况;
(ii)下面是抽取的100名18岁男大学生中20名大学生身高()的数据:
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
经计算得,,其中为抽取的第个学生的身高,.用样本平均数作为的估计值,用样本标准差作为的估计,剔除之外的数据,用剩下的数据估计和的值.(精确到0.01)
附:若随机变量服从正态分布,则,.