题目内容
【题目】如图,已知为等边三角形,为等腰直角三角形,.平面平面ABD,点E与点D在平面ABC的同侧,且,.点F为AD中点,连接EF.
(1)求证:平面ABC;
(2)求证:平面平面ABD.
【答案】(1)见详解;(2)见详解
【解析】
(1)取的中点,连接,可证出,由线面平行的判定定理即可证出;
(2)首先证出平面ABD,再由(1)可证得平面ABD,根据面面垂直的判定定理即可证出.
(1)
取的中点,连接,
点F为AD中点,且
,,且,
四边形为平行四边形,,
又因为平面ABC,平面ABC,
所以平面ABC.
(2)由(1)点为的中点,且为等边三角形,
所以,
又因为.平面平面ABD,
所以平面ABC,所以,
又,所以平面ABD,
又,所以平面ABD,
平面AED,
平面平面ABD.
【题目】已知某产品的销售额与广告费用之间的关系如下表:
(单位:万元) | 0 | 1 | 2 | 3 | 4 |
(单位:万元) | 10 | 15 | 30 | 35 |
若根据表中的数据用最小二乘法求得对的回归直线方程为,则下列说法中错误的是( )
A.产品的销售额与广告费用成正相关
B.该回归直线过点
C.当广告费用为10万元时,销售额一定为74万元
D.的值是20
【题目】某市《城市总体规划(年)》提出到年实现“分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身个方面构建“分钟社区生活圈”指标体系,并依据“分钟社区生活圈”指数高低将小区划分为:优质小区(指数为)、良好小区(指数为)、中等小区(指数为)以及待改进小区(指数为)个等级.下面是三个小区个方面指标的调查数据:
注:每个小区“分钟社区生活圈”指数,其中、、、为该小区四个方面的权重,、、、为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值).
现有个小区的“分钟社区生活圈”指数数据,整理得到如下频数分布表:
分组 | |||||
频数 |
(Ⅰ)分别判断、、三个小区是否是优质小区,并说明理由;
(Ⅱ)对这个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取个小区进行调查,若在抽取的个小区中再随机地选取个小区做深入调查,记这个小区中为优质小区的个数,求的分布列及数学期望.
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).
(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本 的相关系数,
,,.