题目内容
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
(1)-3<<-(2)函数f(x)在区间(0,2)内至少有一个零点.(3)见解析
解析
练习册系列答案
相关题目
题目内容
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
(1)-3<<-(2)函数f(x)在区间(0,2)内至少有一个零点.(3)见解析
解析