题目内容
【题目】已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.
【答案】(Ⅰ) 极小值为f (2)=(Ⅱ)证明如下
【解析】
(Ⅰ)解:当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x | (-,1) | 1 | (1,2) | 2 | (2,+) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
所以,f (x)的极小值为f (2)=.…………………………………6分
(Ⅱ) 解:f′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,
所以f (x)的极小值点x=a,则g(x)的极小值点也为x=a.
而g′ (x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),
所以,
即b=-2(a+1).
又因为1<a≤2,
所以g(x)极大值=g(1)
=4+3b-6(b+2)
=-3
=6a-2
≤10.
故g(x)的极大值小于等于10.…………………………15分
练习册系列答案
相关题目