题目内容

(12分)已知椭圆的离心率为,椭圆的中心关于直线的对称点落在直线

(1)求椭圆C的方程;

(2)设是椭圆上关于轴对称的任意两点,连接交椭圆于另一点,求直线的斜率范围并证明直线轴相交顶点。

解析:(I)由题意知……1分

   又设椭圆中心关于直线的对称点为

 于是方程为……2分

得线段的中点为(2,-1),从而的横坐标为4

椭圆的方程为=1……4分

(II)由题意知直线存在斜率,设直线的方程为并整理得   ①……6分

,得不合题意

……8分

设点,则

由①知……9分

直线方程为……10分

,将代入

整理得 ,再将代入计算得

直线 轴相交于顶点(1,0),……12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网