题目内容

【题目】设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记f(x)的最大值为A.
(1)求f′(x);
(2)求A;
(3)证明:|f′(x)|≤2A.

【答案】
(1)

解:f′(x)=﹣2asin2x﹣(a﹣1)sinx


(2)

当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.

当0<a<1时,f(x)等价为f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,

令g(t)=2at2+(a﹣1)t﹣1,

则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,

且当t= 时,g(t)取得极小值,极小值为g( )=﹣ ﹣1=﹣

令﹣1< <1,得a< (舍)或a> .因此A=3a﹣2

g(﹣1)=a,g(1)=3a+2,a<3a+2,∴t=1时,g(t)取得最大值,g(1)=3a+2,即f(x)的最大值为3a+2.

综上可得:t=1时,g(t)取得最大值,g(1)=3a+2,即f(x)的最大值为3a+2.

∴A=3a+2.

①当0<a≤ 时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,

∴A=2﹣3a,

②当 <a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g( ),

又|g( )﹣g(﹣1)|= >0,

∴A=|g( )|=

综上,A=


(3)

证明:由(1)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,

当0<a≤ 时,|f′(x)|≤1+a≤2﹣4a<2(2﹣3a)=2A,

<a<1时,A= = + + ≥1,

∴|f′(x)|≤1+a≤2A,

当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,

综上:|f′(x)|≤2A.


【解析】(1)根据复合函数的导数公式进行求解即可求f′(x);
(2)讨论a的取值,利用分类讨论的数学,结合换元法,以及一元二次函数的最值的性质进行求解;
(3)由(1),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.
本题主要考查函数的导数以及函数最值的应用,求函数的导数,利用函数单调性和导数的关系,以及换元法,转化法转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网