题目内容

【题目】设a∈R,f(x)= 为奇函数.
(1)求函数F(x)=f(x)+2x﹣ ﹣1的零点;
(2)设g(x)=2log2 ),若不等式f1(x)≤g(x)在区间[ ]上恒成立,求实数k的取值范围.

【答案】
(1)解:∵f(x)是奇函数

∴f(0)=0

∴a=1,f(x)=

F(x)= =

由22x+2x﹣6=0=0,可得2x=2,所以,x=1,

即F(x)的零点为x=1


(2)解:f1(x)= ,在区间[ ]上,由f1(x)≤g(x)恒成立,

恒成立,即 恒成立

即k2≤1﹣x2,x∈[ ],

,k>0,

所以0<k≤


【解析】由f(x)是奇函数,可得f(0)=0,可求a,进而可求f(x)(1)令F(x)=0可求函数F(x)的零点(2)由f1(x)≤g(x)恒成立,可得 恒成立,可得k2≤1﹣x2 , x∈[ ]恒成立,只要k2≤(1﹣x2min即可求解
【考点精析】本题主要考查了函数奇偶性的性质和函数的零点的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网