题目内容
【题目】已知函数f(x)=ax2+lnx(a∈R).
(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数. 。若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.
【答案】(1) (2)a的范围是 .
【解析】试题分析:(1)由题意得 f(x)=x2+lnx, ,∴f(x)在区间[1,e]上为增函数,即可求出函数的最值.
(2)由题意得:令 f(x) f2(x)= ,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=对x∈(1,+∞)恒成立, 分类讨论当 或 时两种情况求函数的最大值,可得到a的范围.又因为h′(x)=﹣x+2a﹣=,
h(x)在(1,+∞)上为减函数,可得到a的另一个范围,综合可得a的范围.
试题解析:
(1)当 时,,;
对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,
∴,.
(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令 <0,对x∈(1,+∞)恒成立,
且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,
∵
若 ,令p′(x)=0,得极值点x1=1,,
当x2>x1=1,即 时,在(x2,+∞)上有p′(x)>0,
此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;
当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;
若 ,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,
从而p(x)在区间(1,+∞)上是减函数;
要使p(x)<0在此区间上恒成立,只须满足 ,
所以 ≤a≤.
又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,
h(x)<h(1)=+2a≤0,所以a≤
综合可知a的范围是[,].