题目内容
【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ , ]时,求f(x)的值域.
【答案】
(1)解:f(x)=2cos2x+ sin2x﹣1=cos2x+ = ,
当2x+ ,即 时,f(x)max=2
(2)解:由 ,得 ,
∴f(x)的单调减区间为[ ],k∈Z
(3)解: ,
由 ,得 ,
∴ ,
∴﹣1≤f(x)≤2.
则f(x)的值域为[﹣1,2]
【解析】f(x)=2cos2x+ sin2x﹣1=cos2x+ = (1)当2x+ ,即 时,f(x)取得最大值;(2)由 ,得 ,即可求出f(x)的单调减区间;(3)由 ,得 ,即可求出f(x)的值域.
【考点精析】本题主要考查了正弦函数的单调性和三角函数的最值的相关知识点,需要掌握正弦函数的单调性:在上是增函数;在上是减函数;函数,当时,取得最小值为;当时,取得最大值为,则,,才能正确解答此题.
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2= .
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |