题目内容

【题目】已知函数,其中为常数.

若曲线处的切线在两坐标轴上的截距相等,求的值

若对,都有,求的取值范围.

【答案】

【解析】

(1)求出切点坐标,写出切线方程,利用切线在两坐标轴上的截距相等,求得a即可.

(2)对a分类讨论,易判断当或当时,在区间内是单调的,根据单调性得出结论,当时,在区间内单调递增,在区间内单调递减,又因为成立.的最大值为,将最大值构造新函数,通过导函数的符号判断函数的单调性求解函数的最值,然后求解结果.

求导得,所以.

,所以曲线处的切线方程为.

由切线在两坐标轴上的截距相等,得,解得即为所求.

,所以区间内单调递减.

时,,所以在区间内单调递减,故,由恒成立,得,这与矛盾,故舍去.

时,,所以在区间内单调递增,故,即,由恒成立得,结合.

时,因为,且区间上单调递减,结合零点存在定理可知,存在唯一,使得,且在区间内单调递增,在区间内单调递减.

,由恒成立知,,所以.

的最大值为,由

所以.

,则,所以在区间内单调递增,于是,即.所以不等式恒成立.

综上所述,所求的取值范围是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网