题目内容

20.已知函数f(x)=x2+mx+m+1(m>5)的两个零点分别为tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),则α+β的值为(  )
A.$\frac{π}{4}$B.-$\frac{π}{4}$C.$\frac{3}{4}π$D.-$\frac{3}{4}π$

分析 由条件利用韦达定理可得tanα+tanβ=-m<-5,tanα•tanβ=m+1>6,α、β∈(-$\frac{π}{2}$,0),α+β∈(-π,0).再根据 tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$ 的值,求得α+β 的值.

解答 解:由题意可得m>5,tanα+tanβ=-m<-5,tanα•tanβ=m+1>6,α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴α、β∈(-$\frac{π}{2}$,0),α+β∈(-π,0).
再根据 tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1,可得α+β=-$\frac{3π}{4}$,
故选:D.

点评 本题主要考查韦达定理、两角和的正切公式,根据三角函数的值求角,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网