题目内容

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.
分析:A:根据同弧所对的圆周角与弦切角相等,得到∠C=∠BAP,根据所给的两个角相等,得到两个三角形相似,根据相似三角形对应边成比例,得到比例式,代入已知的长度,求出结果.
B:设P(x0,y0)为曲线xy=1上的任意一点,在矩阵A变换下得到另一点P'(x'0,y'0),根据法则
x0
y0 
=
2
2
-
2
2
2
2
2
2
x0
y0
,求出即 x0=
2
2
x0+y0),
y0=
2
2
y0-x0 ).再由x0•y0=1 可得  ( y0)2-( x0)2=2,从而得到曲线C′的方程.
C:把参数方程化为普通方程,把极坐标方程化为直角坐标方程,联立方程组求得求两曲线的交点坐标.
D:由题意可得|2x-2a|<
c
2
,|3y-3b|<
c
2
,故|2x-2a|+|3y-3b|<c.再根据绝对值不等式的性质可得|2x-3y-2a+3b|≤|2x-2a|+|3y-3b|,从而证得不等式.
解答:解:A:∵∠BAC=∠APB,∠C=∠BAP,∴△PAB∽△ACB,∴
AB
BC
=
PB
AB
  AB2=PB•BC=7×5=35,∴AB=
35

B:设P(x0,y0)为曲线xy=1上的任意一点,在矩阵A变换下得到另一点P'(x'0,y'0),
则有
x0
y0
=
2
2
-
2
2
2
2
2
2
 
x0
y0
,∴x0′=
2
2
(x0-y0),y0′=
2
2
(x0+y0),
即 x0=
2
2
(x0′+y0′),y0=
2
2
( y0′-x0′ ).
再由x0•y0=1可得 (y0′)2-(x0)2=2,故的曲线C′的方程为y2-x2=1.
C:(1)把曲线C1
x=3cosθ
y=2sinθ
(θ为参数),利用同角三角函数基本关系化为普通方程为
x2
9
+
y2
4
=1. 
把曲线C2:ρsin(θ-
π
4
)=
2
 即
2
2
ρsinθ-
2
2
cosθ=
2
,化为直角坐标为 x-y+2=0.
(2)由
x-y+2=0
x2
9
+
y2
4
=1
 解得
x=0
y=2
,或 
x=-
36
13
y=-
10
13
,故两曲线的交点坐标为(0,2)或(-
36
13
-
10
13
).
D:∵已知|x-a|<
c
4
,|y-b|<
c
6
,∴|2x-2a|<
c
2
,|3y-3b|<
c
2
,∴|2x-2a|+|3y-3b|<c.
再由|2x-3y-2a+3b|=|(2x-2a)-(3y-3b)|≤|2x-2a|+|3y-3b|,
可得|2x-3y-2a+3b|<c.
点评:本题可选圆的切线的性质的应用,考查同弧所对的圆周角等于弦切角,考查三角形相似的判断和性质.求曲线关于矩阵变换后的曲线方程.把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,求两曲线的交点坐标.绝对值不等式的性质应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网