ÌâÄ¿ÄÚÈÝ
£¨Ñ¡×öÌ⣩ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³Éµã£¨-2£¬4£©£¬Çó¾ØÕóM2£®
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÊÔÔÚÇúÏßCÉÏÒ»µãM£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×î´ó£®
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
|
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
|
·ÖÎö£º£¨B£©ÀûÓþØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¹Øϵ¼°¾ØÕóµÄÔËËã¼´¿ÉÇó³ö£»
£¨C£©ÏȰѼ«×ø±ê·½³ÌºÍ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇó³ö£®
£¨C£©ÏȰѼ«×ø±ê·½³ÌºÍ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇó³ö£®
½â´ð£º£¨B£©½â£ºÉèM=
£¬ÔòÓÉ
=
£¬µÃ
£¬
¼´a+b=8£¬c+d=8£®
ÓÉ
=
£¬µÃ
=
£¬
´Ó¶ø-a+2b=-2£¬-c+2d=4£®
ÓÉa+b=8£¬-a+2b=-2£¬c+d=8£¬-c+2d=4½âµÃa=6£¬b=2£¬c=4£¬d=4
¡àM=
£¬M2=
=
£®
£¨C£©½â£ºÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬
¿ÉµÃCµÄÆÕͨ·½³ÌÊÇx2+3y2=3£¬
¼´
+y2=1£®
ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£¬t¡ÊR£©ÏûÈ¥²ÎÊýtdµÃ
Ö±ÏßlµÄÆÕͨ·½³ÌÊÇx+
y-
=0£®
ÉèµãMµÄ×ø±êÊÇ(
cos¦È£¬sin¦È)£¬ÔòµãMµ½Ö±ÏßlµÄ¾àÀëÊÇ
d=
=
£®
µ±sin(¦È+
)=-1ʱ£¬
¼´¦È+
=2k¦Ð+
£¬k¡ÊZ£¬½âµÃ¦È=2k¦Ð+
£¬k¡ÊZdÈ¡µÃ×î´óÖµ£¬
´Ëʱ
cos¦È=-
£¬sin¦È=-
£¬
×ÛÉÏ£¬µãMµÄ×ø±êÊÇ(-
£¬-
)ʱ£¬Mµ½Ö±ÏßlµÄ¾àÀë×î´ó£®
|
|
|
|
|
¼´a+b=8£¬c+d=8£®
ÓÉ
|
|
|
|
|
´Ó¶ø-a+2b=-2£¬-c+2d=4£®
ÓÉa+b=8£¬-a+2b=-2£¬c+d=8£¬-c+2d=4½âµÃa=6£¬b=2£¬c=4£¬d=4
¡àM=
|
|
|
|
£¨C£©½â£ºÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬
¿ÉµÃCµÄÆÕͨ·½³ÌÊÇx2+3y2=3£¬
¼´
x2 |
3 |
ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ
|
Ö±ÏßlµÄÆÕͨ·½³ÌÊÇx+
3 |
3 |
ÉèµãMµÄ×ø±êÊÇ(
3 |
d=
|
| ||||||
2 |
| ||||||
2 |
µ±sin(¦È+
¦Ð |
4 |
¼´¦È+
¦Ð |
4 |
3¦Ð |
2 |
5¦Ð |
4 |
´Ëʱ
3 |
| ||
2 |
| ||
2 |
×ÛÉÏ£¬µãMµÄ×ø±êÊÇ(-
| ||
2 |
| ||
2 |
µãÆÀ£ºÊìÁ·ÕÆÎÕ¾ØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¹Øϵ¼°¾ØÕóµÄÔËËã¡¢Ö±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ¼°ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇó×îÖµÎÊÌâÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿