ÌâÄ¿ÄÚÈÝ
Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
£¬N=
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
cos(¦È+
)£¬ÒÔ¼«µãΪԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
|
|
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2 |
¦Ð |
4 |
|
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®
·ÖÎö£ºAÏȸù¾ÝÌõ¼þµÃµ½DP2=DB•DC£»½ø¶øµÃµ½¡÷BDP¡×¡÷PDC¼´¿ÉµÃµ½½áÂÛ£»
B ÏÈÇó³öMN£¬ÔÙÉ裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®¸ù¾Ý¾ØÕó±ä»»µÃµ½¼´
£¬ÔÙ´úÈëÔº¯Êý¼´¿ÉµÃµ½½áÂÛ£®
C °ÑÇúÏߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¿ÉµÃ·Ö±ð±íʾԲºÍÒ»ÌõÖ±Ïߣ¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÏÒÐľ࣬×îºó½áºÏÏÒ³¤¹«Ê½¼´¿ÉµÃµ½½áÂÛ£®
D ·ÖÇé¿öÈ¥¾ø¶ÔÖµ£¬·Ö±ðÇó½â¼´¿É£®
B ÏÈÇó³öMN£¬ÔÙÉ裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®¸ù¾Ý¾ØÕó±ä»»µÃµ½¼´
|
C °ÑÇúÏߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¿ÉµÃ·Ö±ð±íʾԲºÍÒ»ÌõÖ±Ïߣ¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÏÒÐľ࣬×îºó½áºÏÏÒ³¤¹«Ê½¼´¿ÉµÃµ½½áÂÛ£®
D ·ÖÇé¿öÈ¥¾ø¶ÔÖµ£¬·Ö±ðÇó½â¼´¿É£®
½â´ð£ºÑ¡×öÌâ
A£®Ö¤Ã÷£ºÒòΪPAÓëÔ²ÏàÇÐÓÚA£¬
ËùÒÔDA2=DB•DC£¬¡£¨2·Ö£©
ÒòΪDΪPAÖе㣬ËùÒÔDP=DA£¬
ËùÒÔDP2=DB•DC£¬¼´
=
£® ¡£¨5·Ö£©
ÒòΪ¡ÏBDP=¡ÏPDC£¬ËùÒÔ¡÷BDP¡×¡÷PDC£¬¡£¨8·Ö£©
ËùÒÔ¡ÏDPB=¡ÏDCP£® ¡£¨10·Ö£©
B£®MN=
=
£¬¡£¨4·Ö£©
É裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®
Ôò
=
£¬ËùÒÔ
¼´
¡£¨8·Ö£©
´úÈëy=sinxµÃ£º
b=sin2a£¬¼´b=2sin2a£®
¼´ÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³ÌΪy=2sin2x£® ¡£¨10·Ö£©
C£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=
cos£¨¦È+
£©=cos¦È-sin¦È£¬
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2-x+y=0£¬¼´£¨x-
£©2+£¨y+
£©2=
£®¡£¨3·Ö£©
Ö±ÏßL£º
£¬£¨tΪ²ÎÊý£©¿É»¯Îª3x+4y+1=0£¬¡£¨6·Ö£©
Ô²Ðĵ½Ö±ÏߵľàÀëd=
=
£¬¡£¨8·Ö£©
ÏÒ³¤L=2
=
£®£®¡£¨10·Ö£©
D£®µ±x¡Ý4ʱ£¬2x+1-x+4£¼2£¬½âµÃx£¼-3£¨ÉáÈ¥£©£»¡£¨3·Ö£©
µ±-
¡Üx£¼4ʱ£¬2x+1+x-4£¼2£¬½âµÃx£¼
£¬¡à-
¡Üx£¼
£»¡£¨6·Ö£©
µ±x£¼-
ʱ£¬-2x-1+x-4£¼2£¬½âµÃx£¾-7£¬¡à-7£¼x£¼-
£®¡£¨9·Ö£©
×ÛÉÏ£¬²»µÈʽµÄ½â¼¯Îª£¨-7£¬
£©£®¡£¨10·Ö£©
A£®Ö¤Ã÷£ºÒòΪPAÓëÔ²ÏàÇÐÓÚA£¬
ËùÒÔDA2=DB•DC£¬¡£¨2·Ö£©
ÒòΪDΪPAÖе㣬ËùÒÔDP=DA£¬
ËùÒÔDP2=DB•DC£¬¼´
PD |
DC |
DB |
PD |
ÒòΪ¡ÏBDP=¡ÏPDC£¬ËùÒÔ¡÷BDP¡×¡÷PDC£¬¡£¨8·Ö£©
ËùÒÔ¡ÏDPB=¡ÏDCP£® ¡£¨10·Ö£©
B£®MN=
|
|
|
É裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®
Ôò
|
|
|
|
|
´úÈëy=sinxµÃ£º
1 |
2 |
¼´ÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³ÌΪy=2sin2x£® ¡£¨10·Ö£©
C£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=
2 |
¦Ð |
4 |
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2-x+y=0£¬¼´£¨x-
1 |
2 |
1 |
2 |
1 |
2 |
Ö±ÏßL£º
|
Ô²Ðĵ½Ö±ÏߵľàÀëd=
|3¡Á
| ||||
5 |
1 |
10 |
ÏÒ³¤L=2
R2-d2 |
7 |
5 |
D£®µ±x¡Ý4ʱ£¬2x+1-x+4£¼2£¬½âµÃx£¼-3£¨ÉáÈ¥£©£»¡£¨3·Ö£©
µ±-
1 |
2 |
5 |
3 |
1 |
2 |
5 |
3 |
µ±x£¼-
1 |
2 |
1 |
2 |
×ÛÉÏ£¬²»µÈʽµÄ½â¼¯Îª£¨-7£¬
5 |
3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬¼òµ¥µÄ¾ØÕóÔËËãºÍ¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿