题目内容
【题目】已知函数,其中.
(1)讨论函数的单调性;
(2)若函数存在两个极值点,(其中),且的取值范围为,求的取值范围.
【答案】(1)答案不唯一,具体见解析(2)
【解析】
(1)对函数进行求导,将导数的正负转化成研究一元二次函数的根的分布问题;
(2)利用韦达定理得到,,将转化成关于的表达式,再利用换元法令,从而构造函数,根据函数的值域可得自变量的范围,进而得到的取值范围.
解:(1).
令,则.
①当或,即时,恒成立,所以在上单调递增.
②当,即时,
由,得或;
由,得,
∴在和上单调递增,
在上单调递减.
综上所述,当时,在上单调递增;
当时,在和上单调递增,
在上单调递减.
(2)由(1)得,当时,有两极值点,(其中).
由(1)得,为的两根,所以,.
所以
.
令,则,
因为,
所以在上单调递减,而,,
所以,
又,易知在上单调递增,
所以,
所以实数的取值范围为.
练习册系列答案
相关题目