题目内容
【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)如图,过定点的直线交椭圆于两点,连接并延长交于,求证:.
【答案】(1)(2)证明过程详见解析
【解析】
(1)设出圆的方程,利用圆心到直线的距离等于半径,求出b,利用离心率求出a,即可求出椭圆C的标准方程;
(2)依题意可知直线斜率存在,设方程为,代入整理得
, 与椭圆有两个交点,.
设,,直线,的斜率分别为,,利用韦达定理证明
即可.
解:(1)依题意可设圆方程为,
圆与直线相切,.,
由解得,
椭圆的方程为.
(2)依题意可知直线斜率存在,设方程为,代入整理得
,
与椭圆有两个交点,,即.
设,,直线,的斜率分别为,
则,.
,
即.
【题目】为了进一步推动全市学习型党组织、学习型社会建设,某市组织开展“学习强国”知识测试,每人测试文化、经济两个项目,每个项目满分均为60分.从全体测试人员中随机抽取了100人,分别统计他们文化、经济两个项目的测试成绩,得到文化项目测试成绩的频数分布表和经济项目测试成绩的频率分布直方图如下:
经济项目测试成绩频率分布直方图
分数区间 | 频数 |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化项目测试成绩频数分布表
将测试人员的成绩划分为三个等级如下:分数在区间内为一般,分数在区间内为良好,分数在区间内为优秀.
(1)在抽取的100人中,经济项目等级为优秀的测试人员中女生有14人,经济项目等级为一般或良好的测试人员中女生有34人.填写下面列联表,并根据列联表判断是否有以上的把握认为“经济项目等级为优秀”与性别有关?
优秀 | 一般或良好 | 合计 | |
男生数 | |||
女生数 | |||
合计 |
(2)用这100人的样本估计总体,假设这两个项目的测试成绩相互独立.
(i)从该市测试人员中随机抽取1人,估计其“文化项目等级高于经济项目等级”的概率.
(ii)对该市文化项目、经济项目的学习成绩进行评价.
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.