题目内容

【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.

【答案】
(1)解:依题意有sinA=2sinBsinC.

在△ABC中,A=π﹣B﹣C,

所以sinA=sin(B+C)=sinBcosC+cosBsinC,

所以2sinBsinC=sinBcosC+cosBsinC.

因为△ABC为锐角三角形,所以cosB>0,cosC>0,

所以tanB+tanC=2tanBtanC,

所以tanB,tanBtanC,tanC成等差数列


(2)解:在锐角△ABC中,

tanA=tan(π﹣B﹣C)=﹣tan(B+C)=﹣

即tanAtanBtanC=tanA+tanB+tanC,

由(1)知tanB+tanC=2tanBtanC,

于是tanAtanBtanC=tanA+2tanBtanC≥

整理得tanAtanBtanC≥8,

当且仅当tanA=4时取等号,

故tanAtanBtanC的最小值为8


【解析】(1)依题意有sinA=2sinBsinC,从而2sinBsinC=sinBcosC+cosBsinC,再由cosB>0,cosC>0,能推导出tanB,tanBtanC,tanC成等差数列.(2)推导出tanAtanBtanC=tanA+tanB+tanC,从而tanAtanBtanC≥8,由此能求出tanAtanBtanC的最小值为8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网