ÌâÄ¿ÄÚÈÝ
11£®É躯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪD£¬Èô´æÔÚʵÊýx0£¬Ê¹f£¨x0£©=x0³ÉÁ¢£®Ôò³Æx0Ϊf£¨x£©µÄ²»¶¯µã»ò³Æ£¨x0£®f£¨x£©£©Îªº¯Êýy=f£¨x£©Í¼ÏóµÄ²»¶¯µã£»ÓÐÏÂÁÐ˵·¨£º¢Ùº¯Êýf£¨x£©=2x2-x-4µÄ²»¶¯µãÊÇ-1ºÍ2£»
¢ÚÈô¶ÔÓÚÈÎÒâʵÊýb£¬º¯Êýf£¨x£©=ax2+£¨b+1£©x+b-2£®£¨a¡Ù0£©ºãÓÐÁ½¸ö²»ÏàͬµÄ²»¶¯µã£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ 0£¼a¡Ü2£»
¢Ûº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬Èôy=f£¨x£©Ã»Ó⻶¯µã£¬Ôòº¯Êýy=f£¨f£¨x£©£©Ò²Ã»Ó⻶¯µã£»
¢ÜÉ躯Êýf£¨x£©=$\frac{4}{5}$£¨x-1£©£¬Èôf£¨f£¨f£¨x£©£©£©ÎªÕýÕûÊý£¬ÔòxµÄ×îСֵÊÇ121£»
ÒÔÉÏ˵·¨ÕýÈ·µÄÊǢ٢ۢܣ®
·ÖÎö ¸ù¾ÝÒÑÖªÖк¯Êý²»¶¯µãµÄ¶¨Ò壬ÖðÒ»·ÖÎöËĸö½áÂÛµÄÕæ¼Ù£¬×îºó×ÛºÏÌÖÂÛ½á¹û£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£ºÁî2x2-x-4=x£¬½âµÃx=-1£¬»òx=2£¬¹Ê¢Ùº¯Êýf£¨x£©=2x2-x-4µÄ²»¶¯µãÊÇ-1ºÍ2£¬¹Ê¢ÙÕýÈ·£»
Èô¶ÔÓÚÈÎÒâʵÊýb£¬º¯Êýf£¨x£©=ax2+£¨b+1£©x+b-2£®£¨a¡Ù0£©ºãÓÐÁ½¸ö²»ÏàͬµÄ²»¶¯µã£¬
Ôòax2+£¨b+1£©x+b-2=xÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬Ôò¡÷=b2-4a£¨b-2£©=b2-4ab+8a£¾0ºã³ÉÁ¢£¬
Ôò16a2-32a£¼0£¬½âµÃ0£¼a£¼2£¬¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ0£¼a£¼2£¬¹Ê¢Ú´íÎó£»
¢Ûº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬Èôy=f£¨x£©Ã»Ó⻶¯µã£¬Ôòax2+£¨b-1£©x+c=0ÎÞʵ¸ù£¬Ôòº¯Êýy=f£¨f£¨x£©£©Ò²Ã»Ó⻶¯µã£»
¢ÜÉ躯Êýf£¨x£©=$\frac{4}{5}$£¨x-1£©£¬Èôf£¨f£¨f£¨x£©£©£©=$\frac{4}{5}${$\frac{4}{5}$[$\frac{4}{5}$£¨x-1£©-1]-1}=$\frac{64x-244}{125}$ΪÕýÕûÊý£¬
ÔòxµÄ×îСֵÊÇ121£¬¹Ê¢ÜÕýÈ·£»
¹ÊÕýÈ·µÄÃüÌâµÄÐòºÅΪ£º¢Ù¢Û¢Ü£¬
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬴ËÀàÌâÐÍÍùÍù×ۺϽ϶àµÄÆäËü֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶÈÖеµ£®