题目内容

在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且.
(1)求
(2)设数列满足,求的前n项和.
(1);(2).

试题分析:本题主要考查等差数列的通项公式、等比数列的通项公式、等差数列的前n项和公式、裂项相消法求和等数学知识,考查学生的计算能力和分析问题的能力.第一问,利用等比数列的通项公式和等差数列的前n项和公式将已知表达式展开,求出,从而求出等差数列、等比数列的通项公式;第二问,利用等差数列的前n项和公式先求出,得到进行裂项,用裂项相消法求数列的前n项和.
试题解析:(1)设的公差为.
因为所以                        3分
解得 (舍),
 ,.                                  6分
(2)由(1)可知,,                        7分
所以.                        9分
            12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网