题目内容

设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={1,2,3,4},Q={x|
x+
1
2
<2,x∈R }
,则P-Q=______.
集合Q={x|
x+
1
2
<2,x∈R }
={x|-
1
2
≤x<
7
2
},
由定义P-Q={x|x∈P,且x∉Q},求P-Q可检验P={1,2,3,4}中的元素在不在Q中,
所有在P中不在Q中的元素即为P-Q中的元素,
故P-Q={4}.
故答案为:{4}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网