题目内容
【题目】函数 是偶函数,求解下列问题.
(1)求θ;
(2)将函数y=f(x)的图象先纵坐标不变,横坐标缩短为原来的 倍,再向左平移 个单位,然后向上平移1个单位得到y=g(x)的图象,若关于x的方程 在 有且只有两个不同的根,求m的范围.
【答案】
(1)
解: ,
而f(x)为偶函数,则 即
∴ ,k∈Z
又∵ ,∴
(2)
解:f(x)=2cos2x,
∴ 可化为 与 在
1<m≤2或﹣2≤m<﹣1
【解析】分析:(1)先用辅助角法将函数转化为一个角的一种三角函数,再由其为偶函数求解.(2)由(1)知f(x)然后严格按照变换要求得到g(x),再将方程 转化为 求解.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.
【题目】近年来我国电子商务行业迎来发展的新机遇,2016年双11期间,某购物平台的销售业
绩高达1207亿人民币。与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量:
①求对商品和服务全好评的次数的分布列;
②求的数学期望和方差.
(,其中)
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 140 | ||
对商品不满意 | 10 | ||
合计 | 200 |