题目内容
【题目】如图,四棱锥中,底面为矩形,平面,是的中点.
(1)证明://平面;
(2)设,三棱锥的体积,求到平面的距离.
【答案】(1)详见解析(2)
【解析】
试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离
试题解析:(I)设BD交AC于点O,连结EO。
因为ABCD为矩形,所以O为BD的中点。
又E为PD的中点,所以EO∥PB
又EO平面AEC,PB平面AEC
所以PB∥平面AEC。
(II)
由,可得.
作交于。
由题设易知,所以
故,
又 所以到平面的距离为
法2:等体积法
由,可得.
由题设易知,得BC
假设到平面的距离为d,
又因为PB=
所以
又因为(或),
,
所以
练习册系列答案
相关题目