题目内容
【题目】若函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若在上存在两个零点,求的取值范围.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)求出导函数,函数的定义域,通过①当a≤0时,②当a>0时,分别求解函数的单调区间即可;
(Ⅱ)通过a≤0时,当a>0时,利用函数的单调性结合函数的零点,列出不等式即可求解a的取值范围.
解:(Ⅰ)函数的定义域为,
,
当时,,在单调递减.
当时,令,,其中舍去
则
当时,,则在上单调递减,
当时,,则在上单调递增.
所以在上单调递减,在上单调递增.
综上所述,当时,在单调递减,
当时,所以在上单调递减,在上单调递增.
(Ⅱ)由(Ⅰ)得,当时,在单调递减,不合题意,舍去.
当时,
由于在上有两个零点,
又因为,所以是的一个零点.
因此问题等价于:在存在一个零点,
又由(Ⅰ)得,当时,存在一个极值点,
故,即.
因此问题等价于:
.
因为
,
令,
在恒成立,所以在单调递减,
,
所以成立,
所以存在,.
取,
,
,
所以在存在一个零点.
综上所述,.
另解:当趋近于时,趋近于正无穷大,则.
练习册系列答案
相关题目