题目内容
【题目】已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:f(1﹣a)+f(1﹣a2)<0.求a的取值范围.
【答案】解:由f(1﹣a)+f(1﹣a2)<0得f(1﹣a)<﹣f(1﹣a2),
∵函数y=f(x)是奇函数,
∴﹣f(1﹣a2)=f(a2﹣1),
即不等式等价为f(1﹣a)<f(a2﹣1),
∵y=f(x)在定义域(﹣1,1)上是减函数,
∴有 ,即 ,
∴ ,解得0<a<1
【解析】利用函数是奇函数,将不等式f(1﹣a)+f(1﹣a2)<0转化为f(1﹣a)<﹣f(1﹣a2)=f(a2﹣1),然后利用函数的单调性进行求解.
【考点精析】关于本题考查的函数单调性的判断方法和函数的奇偶性,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能得出正确答案.
练习册系列答案
相关题目
【题目】给出最小二乘法下的回归直线方程 = x+ 系数公式:
= ,
假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如表的统计资料:
使用年限x (年) | 2 | 3 | 4 | 5 | 6 |
维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?