题目内容
【题目】已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是( )
A.(0,2]
B.[ ,+∞)
C.[ ,2]
D.[ ,2]∪[4,+∞)
【答案】C
【解析】解:∵函数y=f(x)与y=F(x)的图象关于y轴对称, ∴F(x)=f(﹣x)=|2﹣x﹣t|,
∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,
∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,
∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,
∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,
即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,
即2﹣x≤t≤2x在[1,2]上恒成立,
即 ≤t≤2,
故选:C
练习册系列答案
相关题目