题目内容
若f(x)=x3+2x,则曲线y=f(x)在点(1,f(1))处的切线方程为( )
A.5x-y-2=0 | B.5x-y+2=0 | C.5x+y-2=0 | D.3x+y-2=0 |
y'=3x2+2,
y'|x=1=5,切点为(1,3)
∴曲线y=x3+2x在点(1,f(1))切线方程为y-3=5(x-1),
即5x-y-2=0.
故选A.
y'|x=1=5,切点为(1,3)
∴曲线y=x3+2x在点(1,f(1))切线方程为y-3=5(x-1),
即5x-y-2=0.
故选A.
练习册系列答案
相关题目