题目内容
设数列
的前
项的和
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525633435.gif)
(Ⅰ)求首项
与通项
;
(Ⅱ)设
,
,证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525586381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525601192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525601676.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525633435.gif)
(Ⅰ)求首项
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525633206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525648212.gif)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525679450.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525633435.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525773511.gif)
(Ⅰ)a1=2,an=4n-2n, n="1,2,3," …,;(Ⅱ)同解析;
(Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ①
得 a1=S1= a1-×4+所以a1=2.
再由①有 Sn-1=an-1-×2n+, n=2,3,4,…
将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n="2,3," …
整理得: an+2n=4(an-1+2n-1),n="2,3," … ,
因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,
即 : an+2n=4×4n-1= 4n, n="1,2,3," …,
因而an=4n-2n, n="1,2,3," …,
(Ⅱ)将an=4n-2n代入①得:
Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)
= ×(2n+1-1)(2n-1)
Tn= = × = ×(- )
所以,
=
- )
= ×(- ) <
得 a1=S1= a1-×4+所以a1=2.
再由①有 Sn-1=an-1-×2n+, n=2,3,4,…
将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n="2,3," …
整理得: an+2n=4(an-1+2n-1),n="2,3," … ,
因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,
即 : an+2n=4×4n-1= 4n, n="1,2,3," …,
因而an=4n-2n, n="1,2,3," …,
(Ⅱ)将an=4n-2n代入①得:
Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)
= ×(2n+1-1)(2n-1)
Tn= = × = ×(- )
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525789423.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134525804403.gif)
= ×(- ) <
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目