题目内容
17.用放缩法证明:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N+)分析 利用放缩法,结合裂项求和,即可证明结论.
解答 证明:∵n≥2时,$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=2-$\frac{1}{n}$<2,
n=1时,1<2成立,
∴1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N+)
点评 本题考查放缩法,正确放缩、裂项求和是关键.
练习册系列答案
相关题目
9.若sinα+cosα=$\frac{1-\sqrt{3}}{2}$,α∈(0,π),则sinα-cosα的值为( )
A. | $\frac{1-\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\frac{\sqrt{3}+1}{4}$ | D. | $\frac{\sqrt{3}-1}{2}$ |