题目内容
10.设函数f(x),g(x)都是[0,1]上的实值函数,证明:存在x0,y0∈[0,1],使得|x0y0-f(x0)-g(y0)|≥$\frac{1}{4}$.分析 利用反证法进行证明,若对任意实数x、y,都有|xy-f(x)-g(y)|<$\frac{1}{4}$.记S(x,y)=xy-f(x)-f(y),则|S(0,0)|<$\frac{1}{4}$,|S(0,1)|<$\frac{1}{4}$,|S(1,0)|<$\frac{1}{4}$,|S(1,1)|<$\frac{1}{4}$.再证明|S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)|≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)|=1,即可得出结论.
解答 证明:若对任意实数x、y,都有|xy-f(x)-g(y)|<$\frac{1}{4}$.
记S(x,y)=xy-f(x)-f(y),则|S(0,0)|<$\frac{1}{4}$,|S(0,1)|<$\frac{1}{4}$,|S(1,0)|<$\frac{1}{4}$,|S(1,1)|<$\frac{1}{4}$.
而S(0,0)=-f(0)-g(0),S(0,1)=-f(0)-g(1),S(1,0)=-f(1)-g(0),S(1,1)=1-f(1)-g(1).
∴|S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)|≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)|=1
这与假设相矛盾!,
故原命题成立.
点评 本题考查不等式的证明,考查反证法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
18.已知实数x、y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=x-2y的最大值为( )
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
15.若p是¬q的充分不必要条件,则¬p是q的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
2.某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为$\frac{2}{5}$.
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.
专业 性别 | 中文 | 英语 | 数学 | 体育 |
男 | n | 1 | m | 1 |
女 | 1 | 1 | 1 | 1 |
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.
20.将$y=sin(2x-\frac{π}{4})$的图象上所有点向左平移$\frac{π}{4}$后得到y=f(x)的图象,则y=f(x)在[-$\frac{π}{2}$,0]上的最小值为( )
A. | -1 | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{3}}}{2}$ |