题目内容
18.已知实数x、y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=x-2y的最大值为( )A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$作出可行域如图,
化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过A(0,-1)时,直线在y轴上的截距最小,z有最大值为0-2×(-1)=2.
故选:C.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
8.函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程为( )
A. | $\frac{π}{3}$ | B. | -$\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{5π}{6}$ |
8.一个组合体的主视图和左视图相同,如图,其体积为22π,则图中的x为( )
A. | 4 | B. | 4.5 | C. | 5 | D. | 5.5 |