题目内容
【题目】已知函数f(x)=lg(ax﹣bx),(a,b为常数,a>1>b>0),若x∈(2,+∞)时,f(x)>0恒成立,则( )
A.a2﹣b2>1
B.a2﹣b2≥1
C.a2﹣b2<1
D.a2﹣b2≤1
【答案】B
【解析】解:∵a>1>b>0,
∴y=ax为R上的增函数,y=﹣bx为R上的增函数,
∴y=ax﹣bx为R上的增函数,又y=lgx为(0,+∞)上的增函数,
由复合函数的单调性知,f(x)=lg(ax﹣bx)为定义域上的增函数,
又x∈(2,+∞)时,f(x)>0恒成立,
∴a2﹣b2≥1,
故选:B.
练习册系列答案
相关题目
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如表:
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
经计算K2的观测值为10,则下列选项正确的是( )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响
D.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响