题目内容
13.如图,在等腰梯形ABCD中,AB∥CD,AD=CD=CB=1,∠ABC=60°,四边形ACEF为矩形,且AF⊥AB,CE=1.(Ⅰ)求证:BC⊥平面ACEF;
(Ⅱ)若点P为线段BE的中点,求四棱锥P-ACEF的体积.
分析 (Ⅰ)要证BC⊥平面ACEF,已知条件平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,只要证明BC⊥AC即可,
根据已知条件,通过解三角形得到BC⊥AC,则结论得到证明;
(Ⅱ)由BC⊥平面ACEF,可得BC为点B到平面ACEF的距离,利用棱锥的体积公式,即可求四棱锥P-ACEF的体积.
解答 (Ⅰ)证明:在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,∴AB=2,
∴AC2=AB2+BC2-2AC•BCcos60°=3,
∴AB2=AC2+BC2,
∴AC⊥BC,
又四边形ACEF为矩形,
∴AF⊥AC,
∵AF⊥AB,AB∩AC=A,
∴AF⊥平面ABCD,
∴AF⊥BC,
∵AF∩AC=A,
∴BC⊥平面ACEF;
(Ⅱ)解:由BC⊥平面ACEF,可得BC为点B到平面ACEF的距离,
由于点P为线段BE的中点,则点P到平面ACEF的距离为h=$\frac{1}{2}$BC=$\frac{1}{2}$,
∵S矩形ACEF=$\sqrt{3}$,
∴四棱锥P-ACEF的体积为$\frac{1}{3}×\sqrt{3}×\frac{1}{2}$=$\frac{\sqrt{3}}{6}$.
点评 本题考查直线与平面垂直的判断,考查棱锥的体积公式,考查了学生的空间想象能力和思维能力,是中档题.
练习册系列答案
相关题目
3.设集合A=$\{x|-\frac{1}{2}<x<2\},B=\{x\left|{{x^2}≤1}\right.\}$,则A∪B=( )
A. | $\{x|-\frac{1}{2}<x≤1\}$ | B. | {x|-1≤x<2} | C. | {x|x<2} | D. | {x|1≤x<2} |
8.某几何体的三视图如图所示,其正视图中的曲线部分为半圆,则该几何体的表面积为( )
A. | 10+6$\sqrt{2}$+4π(cm2) | B. | 16+6$\sqrt{2}$+4π(cm2) | C. | 12+4π(cm2) | D. | 22+4π(cm2) |
18.x,y满足约束条件$\left\{\begin{array}{l}x+2y-1≥0\\ x-y≥0\\ 0≤x≤k.\end{array}\right.$若z=x+ky的最小值为-2,则z的最大值为( )
A. | 12 | B. | 16 | C. | 20 | D. | 24 |
5.已知平面α∥β,且α与β的距离为d(d>0). m?α.则在β内与直线m的距离为2d的直线共有( )
A. | 0条 | B. | 1条 | C. | 2条 | D. | 无数条 |
2.某高中有高一新生500名,分成水平相同的A,B两类进行教学实验.为对比教学效果,现用分层抽样的方法从A、B两类学生中分别抽取了40人、60人进行测试.
(Ⅰ)求该学校高一新生A、B两类学生各多少人?
(Ⅱ)经过测试,得到以下三个数据图表:
图一:75分以上A、B两类参加测试学生成绩的茎叶图(茎、叶分别是十位和个位上的数字)(如图1)
图二:100名测试学生成绩的频率分布直方图2;
表一:100名测试学生成绩频率分布表;
①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;
②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.
(Ⅰ)求该学校高一新生A、B两类学生各多少人?
(Ⅱ)经过测试,得到以下三个数据图表:
图一:75分以上A、B两类参加测试学生成绩的茎叶图(茎、叶分别是十位和个位上的数字)(如图1)
图二:100名测试学生成绩的频率分布直方图2;
表一:100名测试学生成绩频率分布表;
组号 | 分组 | 频数 | 频率 |
1 | [55,60) | 5 | 0.05 |
2 | [60,65) | 20 | 0.20 |
3 | [65,70) | ||
4 | [70,75) | 35 | 0.35 |
5 | [75,80) | ||
6 | [80,85) | ||
合计 | 100 | 1.00 |
②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.