题目内容

【题目】如甲图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙图所示的四棱锥D1﹣ABCE.
(Ⅰ)求证:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.

【答案】证明:(Ⅰ)如图,取AE中点F,连D1F, 在△AD1E中,∵D1A=D1E=2,∴D1F⊥AE,
又∵平面D1AE⊥平面ABCE,∴D1F⊥平面ABCE,
∵BE平面ABCE,∴D1F⊥BE.
在△ABE中,可得 ,BE=2 ,AB=4,
∴BE⊥AE,又∵D1F∩AE=F,
∴BE⊥平面D1AE;
(Ⅱ)解:由题意,取AB中点G,以E为坐标原点,分别以EG,EC为x,y轴正方向建立空间直角坐标系E﹣xyz.

如图所示,则E(0,0,0),C(0,2,0)D1(1,﹣1, ),B(2,2,0),
由(Ⅰ)知: 是平面AD1E的法向量,
设平面CED1的法向量为 ,则
,令z=1,则x=﹣ ,y=0,

设二面角A﹣D1E﹣C的平面角为θ,
则|cosθ|=|cos< >|=| |=
由图可知,二面角A﹣D1E﹣C的平面角为钝角,
∴cos
即二面角A﹣D1E﹣C的余弦值为
【解析】(Ⅰ)取AE中点F,连D1F,求解三角形可得D1F⊥AE,又平面D1AE⊥平面ABCE,利用面面垂直的性质可得D1F⊥平面ABCE,从而得到D1F⊥BE.在△ABE中,可得BE⊥AE,再利用线面垂直的判定可得BE⊥平面D1AE;(Ⅱ)由题意,取AB中点G,以E为坐标原点,分别以EG,EC为x,y轴正方向建立空间直角坐标系E﹣xyz.求出所用点的坐标,得到平面AD1E与平面CED1的法向量.利用两法向量所成角的余弦值可得二面角A﹣D1E﹣C的余弦值.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网