题目内容
【题目】已知函数f(x)=x3+3|x﹣a|(a∈R).
(1)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);
(2)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.
【答案】
(1)解:∵f(x)=x3+3|x﹣a|= ,
∴f′(x)= ,
①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,
∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,
∴M(a)﹣m(a)=8;
②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,
∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,
∵f(1)﹣f(﹣1)=﹣6a+2,
∴﹣1<a≤ 时,M(a)﹣m(a)=﹣a3﹣3a+4;
<a<1时,M(a)﹣m(a)=﹣a3+3a+2;
③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,
∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,
∴M(a)﹣m(a)=4;
(2)解:令h(x)=f(x)+b,则h(x)= ,h′(x)= ,
∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,
∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,
由(Ⅰ)知,
①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;
②﹣1<a≤ 时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,
令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0, )上是增函数,∴t(a)>t(0)=﹣2,
∴﹣2≤3a+b≤0;
③ <a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣ <3a+b≤0;
④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.
综上,3a+b的取值范围是﹣2≤3a+b≤0
【解析】(1)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(2)令h(x)=f(x)+b,则h(x)= ,h′(x)= ,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.
【题目】改革开放四十周年纪念币从2018年12月5日起可以开始预约通过市场调查,得到该纪念章每1枚的市场价单位:元与上市时间单位:天的数据如下:
上市时间x天 | 8 | 10 | 32 |
市场价y元 | 82 | 60 | 82 |
根据上表数据,从下列函数:;;中选取一个恰当的函数刻画改革开放四十周年纪念章的市场价y与上市时间x的变化关系并说明理由
利用你选取的函数,求改革开放四十周年纪念章市场价最低时的上市天数及最低的价格.