题目内容
8.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是( )A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 由新定义可得t的范围,验证可得最大的正整数n为4.
解答 解:若[t]=1,则t∈[1,2),
若[t2]=2,则t∈[$\sqrt{2}$,$\sqrt{3}$)(因为题目需要同时成立,则负区间舍去),
若[t3]=3,则t∈[$\root{3}{3}$,$\root{3}{4}$),
若[t4]=4,则t∈[$\root{4}{4}$,$\root{4}{5}$),
若[t5]=5,则t∈[$\root{5}{5}$,$\root{5}{6}$),
其中$\sqrt{3}$≈1.732,$\root{3}{4}$≈1.587,$\root{4}{5}$≈1.495,$\root{5}{6}$≈1.431<1.495,
通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)上,
但当t=5时,无法找到实数t使其在区间[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)∩[$\root{5}{5}$,$\root{5}{6}$)
上,
∴正整数n的最大值4
故选:B.
点评 本题考查简单的演绎推理,涉及新定义,属基础题.
练习册系列答案
相关题目
18.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b (e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )
A. | 16小时 | B. | 20小时 | C. | 24小时 | D. | 28小时 |
3.i为虚数单位,i607的共轭复数为( )
A. | i | B. | -i | C. | 1 | D. | -1 |
20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为( )
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
17.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是( )
A. | 直线 | B. | 抛物线 | C. | 椭圆 | D. | 双曲线的一支 |
8.如图,圆锥的底面直径AB=2,母线长VA=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是( )
A. | $\sqrt{13}$ | B. | $\sqrt{7}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{3\sqrt{3}}{2}$ |