题目内容
14.已知函数f(x)=$\frac{x}{x+2}$,数列{an}满足a1=1,an+1=f(an)(n∈N*).(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=2nanan+1,Sn=b1+b2+…+bn,求证:Sn<1.
分析 (1)由函数f(x)=$\frac{x}{x+2}$,数列{an}满足a1=1,an+1=f(an)(n∈N*),可得an+1=$\frac{{a}_{n}}{{a}_{n}+2}$,变形为$\frac{1}{{a}_{n+1}}+1=2(\frac{1}{{a}_{n}}+1)$,利用等比数列的通项公式即可得出.
(2)bn=2nanan+1=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$.利用“裂项求和”可得Sn,即可证明.
解答 (1)解:∵函数f(x)=$\frac{x}{x+2}$,数列{an}满足a1=1,an+1=f(an)(n∈N*).
∴an+1=$\frac{{a}_{n}}{{a}_{n}+2}$,∴$\frac{1}{{a}_{n+1}}=\frac{2}{{a}_{n}}+1$,变形为$\frac{1}{{a}_{n+1}}+1=2(\frac{1}{{a}_{n}}+1)$,
∴数列$\{\frac{1}{{a}_{n}}+1\}$是等比数列,首项为2,公比为2.
∴$\frac{1}{{a}_{n}}+1={2}^{n}$,
化为${a}_{n}=\frac{1}{{2}^{n}-1}$.
(2)证明:bn=2nanan+1=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$.
∴Sn=b1+b2+…+bn=$(1-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$<1,
∴Sn<1.
点评 本题考查了等比数列的通项公式、“裂项求和”方法,考查了变形能力,考查了推理能力与计算能力,属于中档题.
A. | (-∞,2] | B. | (0,+∞) | C. | (0,2) | D. | [0,2) |