题目内容
【题目】莆田市是福建省“历史文化名城”之一,也是旅游资源丰富的城市.“九头十八巷”、“二十四景”美如画.某文化传媒公司为了解莆田民众对当地风景民俗知识的了解情况,在全市进行网上问卷(满分100分)调查,民众参与度极高.该公司对得分数据进行统计拟合,认为服从正态分布.
(1)从参与调查的民众中随机抽取200名作为幸运者,试估算其中得分在75分以上(含75分)的人数(四舍五入精确到1人);
(2)在(1)的条件下,为感谢参与民众,该公司组织两种活动,得分在75分以上(含75分)的幸运者选择其中一种活动参与.活动如下:
活动一 参与一次抽奖.已知抽中价值200元的礼品的概率为,抽中价值420元的礼品的概率为;
活动二 挑战一次闯关游戏.规则如下:游戏共有三关,闯关成功与否相互独立,挑战者依次闯关,第一关闯关失败者没有获得礼品,第二关起闯关失败者只能获得上一关的礼品,获得的礼品不累计,闯关结束.已知第一关通过的概率为,可获得价值300元的礼品;第二关通过的概率为,可获得价值800元的礼品;第三关通过的概率为,可获得价值1800元的礼品.
若参与活动的幸运者均选择礼品价值期望值较高的活动,该公司以该期望值为依据,需准备多少元的礼品?
附:若,则,,.
【答案】(1);(2)
【解析】
(1)计算得到,,故,计算得到答案.
(2)计算,活动二的取值可能有,,,,计算概率得到分布列,得到,计算得到答案.
(1)服从正态分布,则,,
,
故,故人数为.
(2)活动一的数学期望为:;
活动二的取值可能有,,,,
故,,,
.
分布列为:
故.
,故需要准备元礼物.
练习册系列答案
相关题目