题目内容
【题目】设函数.若曲线在点处的切线方程为
(为自然对数的底数).
(1)求函数的单调区间;
(2)若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1) 函数的单调递减区间是,单调递增区间是
(2)
【解析】试题分析:(1)第(1)问,先根据曲线在点处的切线方程为
求出m=1,n=0,再利用导数求函数f(x)的单调区间.(2)第(2)问,先把原命题转化为函数对任意恒成立,再利用导数求函数H(x)的单调性,检验每一种情况下H(x)的最大值是否小于零.
试题解析:
(1)函数定义域为.得,
,即所以.所以,
.函数的单调递减区间是,单调递增区间是.
(2)由题得函数对任意恒成立,
即不等式对任意恒成立.
又,当即恒成立时,
函数递减,设,则,所以,即,符合题意;
当时, 恒成立,此时函数单调递增.于是不等式对任意恒成立,不符合题意;
当时,设,
则 ;
当时, ,此时单调递增,
,
故当时,函数递增.于是当时, 成立,不符合题意;
综上所述,实数的取值范围为: .
点睛:本题的难点在于得到后如何解不等式>0或<0,只有解出了不等式才能得到函数H(x)的单调区间.本题利用了再构造再求导的方法(即二次求导).当我们求出函数f(x)的导数之后,如果不易解出,可以利用二次求导找不等式的解集,从而找到原函数的单调性.
练习册系列答案
相关题目