题目内容

【题目】已知函数f(x)=ex﹣ex , 下列命题正确的有 . (写出所有正确命题的编号)
①f(x)是奇函数;
②f(x)在R上是单调递增函数;
③方程f(x)=x2+2x有且仅有1个实数根;
④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.

【答案】①②④
【解析】解:根据题意,依次分析4个命题:
对于①、f(x)=ex﹣ex , 定义域是R,且f(﹣x)=ex﹣ex=﹣f(x),f(x)是奇函数;故①正确;
对于②、若f(x)=ex﹣ex , 则f′(x)=ex+ex>0,故f(x)在R递增;故②正确;
对于③、f(x)=x2+2x,令g(x)=ex﹣ex﹣x2﹣2x,
令x=0可得,g(0)=0,即方程f(x)=x2+2x有一根x=0,
g(3)=e3 ﹣13<0,g(4)=e4 ﹣20>0,
则方程f(x)=x2+2x有一根在(3,4)之间,
故③错误;
对于④、如果对任意x∈(0,+∞),都有f(x)>kx,即ex﹣ex﹣kx>0恒成立,
令h(x)=ex﹣ex﹣kx,且h(0)=0,
若h(x)>0恒成立,则必有h′(x)=ex+ex﹣k>0恒成立,
若ex+ex﹣k>0,即k<ex+ex=ex+ 恒成立,
而ex+ ≥2,若有k<2,
故④正确;
综合可得:①②④正确;
所以答案是:①②④.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网