题目内容
7.函数g(x)=log2$\frac{2x}{x+1}$(x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为-$\frac{3}{2}$<m≤-$\frac{4}{3}$.分析 可判断函数y=$\frac{2x}{x+1}$在(0,+∞)上单调递增,y=log2x在(0,2)上单调递增,从而可得|g(x)|=0或0<|g(x)|<1,0<|g(x)|<1或|g(x)|≥1;从而解得.
解答 解:当x>0时,0<$\frac{2x}{x+1}$<2,
且函数y=$\frac{2x}{x+1}$在(0,+∞)上单调递增,
y=log2x在(0,2)上单调递增,
且y<1;
故若关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,
则|g(x)|=0或0<|g(x)|<1,0<|g(x)|<1或|g(x)|≥1;
若|g(x)|=0,则2m+3=0,故m=-$\frac{3}{2}$;
故|g(x)|=0或|g(x)|=$\frac{3}{2}$,不成立;
故0<|g(x)|<1或|g(x)|≥1;
故$\left\{\begin{array}{l}{△={m}^{2}-4(2m+3)>0}\\{2m+3>0}\\{1+m+2m+3≤0}\end{array}\right.$,
解得,-$\frac{3}{2}$<m≤-$\frac{4}{3}$;
故答案为:-$\frac{3}{2}$<m≤-$\frac{4}{3}$.
点评 本题考查了复合函数的应用及方程的根与函数的零点的关系应用,属于中档题.
练习册系列答案
相关题目
2.设b、c、m是空间色三条不同直线,α、β、γ是空间的三个不同平面,在下面给出的四个命题中,正确的命题是( )
A. | 若b⊥m,c⊥m,则b∥c | B. | m∥a,α⊥β,则m⊥β | C. | 若b⊥α,c∥α,则b⊥c | D. | 若β⊥α,γ⊥β,则γ∥α |