题目内容

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面积S= c2 , 求sinC的值.

【答案】
(1)解:∵asinB=﹣bsin(A+ ).

∴由正弦定理可得:sinAsinB=﹣sinBsin(A+ ).即:sinA=﹣sin(A+ ).

可得:sinA=﹣ sinA﹣ cosA,化简可得:tanA=﹣

∵A∈(0,π),

∴A=


(2)解:∵A=

∴sinA=

∵由S= c2= bcsinA= bc,可得:b=

∴a2=b2+c2﹣2bccosA=7c2,可得:a=

由正弦定理可得:sinC=


【解析】(1)由正弦定理化简已知可得tanA=﹣ ,结合范围A∈(0,π),即可计算求解A的值.(2)由(1)可求sinA= ,利用三角形面积公式可求b= ,利用余弦定理可求a= ,由正弦定理即可计算求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网