题目内容
【题目】函数f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,且当0<x<1时,f(x)=2x , 则f(﹣ )+f(4)= .
【答案】﹣
【解析】解:∵f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,
∴f(x+1)=﹣f(x),
则f(x+2)=﹣f(x+1)=f(x),
则函数f(x)是周期为2的周期函数,
则f(4)=f(0)=0,
∵当0<x<1时,f(x)=2x ,
∴f(﹣ )=f(﹣ +2)=f(﹣ )=﹣f( )=﹣ =﹣ ,
则f(﹣ )+f(4)=﹣ +0=﹣ ,
所以答案是:﹣ .
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.
练习册系列答案
相关题目
【题目】为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:
支持 | 不支持 | 合计 | |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为X,求X的分布列及数学期望。
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |