题目内容

【题目】已知a>0,b>0,a3+b3=2,证明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

【答案】证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥( + 2=(a3+b32≥4,
当且仅当 = ,即a=b=1时取等号,
(Ⅱ)∵a3+b3=2,
∴(a+b)(a2﹣ab+b2)=2,
∴(a+b)[(a+b)2﹣3ab]=2,
∴(a+b)3﹣3ab(a+b)=2,
=ab,
由均值不等式可得: =ab≤( 2
∴(a+b)3﹣2≤
(a+b)3≤2,
∴a+b≤2,当且仅当a=b=1时等号成立.
【解析】(Ⅰ)由柯西不等式即可证明,
(Ⅱ)由a3+b3=2转化为 =ab,再由均值不等式可得: =ab≤( 2 , 即可得到 (a+b)3≤2,问题得以证明.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:,以及对不等式的证明的理解,了解不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网