题目内容

已知函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)<f(x+2)的解集为(  )
A、{x|x<3}
B、{x|
1
2
<x<3}
C、{x|-
1
3
<x<3}
D、{x|
1
3
<x<3}
分析:由于函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,所以函数f(x)应该在[1,+∞)上单调递增,利用函数的单调性即可求出不等式f(2x-1)<f(x+2)的解集.
解答:解:因为函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,
又由于又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,
所以不等式f(2x-1)<f(x+2)?f(|2x-1-1|)<f(|x+2-1|),
所以|2x-2|<|x+1|?3x2-10x+3<0,解得
1
3
<x<3

所以所求不等式的解集为:{x|
1
3
<x<3
}
故选:D
点评:此题考查了函数的平移,函数的奇偶性与单调性的联合使用求解抽象函数的不等式,还考查了含绝对值的不等式的求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网